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I. INTRODUCTION

Let eel) denote the set of continuous, real-valued functions on the interval
1 = [-I, 1], and let ;JjJ n+1 C C(I) be a Haar subspace of dimension n + 1.
Let ji • II denote the uniform norm on eel). For /E eel) with best uniform
approximation Tn{f) from ;JjJn+1 there are positive constants Yn{f) and An{f)
such that for any p E ;JjJn+1 and any g E eel),

and
II/ - p II ~ II/ - Tn(f)11 + Yn{f) II p - Tinll, (Ll)

(1.2)

Inequality (Ll) is the well-known strong unicity Theorem [3, p. 80], and
inequality (1.2) is the Freud theorem [3, p. 82]. A number of recent papers
[1,2,4-6,8, 10] have examined the constants Yn{f) and An{f). In particular,
for fixed n, Bartelt [I] and Cline [4] show that Y = y(f) may actually be
chosen independent of / if the interval 1 is replaced by a finite point set X.
Henry and Schmidt [6] show for compact subsets r C eel) with
r n ;JjJn+1 = 0 that the constant A(f) in (1.2) may be replaced by a constant
Ar and that (1.2) remains valid for all /E rand g E eel). Bartelt [I] gives
conditions that ensure for sequences {fj}j:l with limj~oo Ii/ - fj II = 0 that
limj_oo A(fj) = A{f).

For fixed/and n, Henry and Roulier [5] investigate the behavior of A(f)
for changing intervals.
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For fixed f and changing n, Poreda [10] investigates the properties of the
sequence {Yn(f)}~=o' The purpose of the present paper is to extend the
investigations initiated in [10]. Thus we are interested in the behavior of the
sequences {Yn(f)}~="o and {\,(f)}~" () for appropriate functionsfE C(I).

2. STRONG UNIClTY CONSTANTS

LetfE C(I), let Yn(f) be the largest constant for which (1.1) is valid for all
p E .9'n+1 , and let AnCn be the smallest constant for which (1.2) is true for all
gEC(I). Define SW'n+l) = {PEY'n+1: Ilpll = I}. Then it is known ([1,2],
and in particular [8, Lemma 1]) that

Yn(f) = inf max sgn[f(x) - Tn(f)(x)] p(x), (2.1)
PES(.9'n+1) XEEn+1(f)

where

En+1(f) = {x E 1: If(x) - Tn(f)(x) I ~~ itf - Tn(f)II}.

It is also known that

and that

n = 0, 1,2,... , (2.2)

°< Yn(f) ~ 1,

see [3, pp. 80, 82].
Let

n = 0, 1,2,... ; (2.3)

(2.4)

In [10] Poreda poses the following problem: For what functionsfE C(I) is
the sequence

(2.5)

bounded? We note from (2.2) and (2.4) that if (2.5) is bounded, then

(2.6)

will also be a bounded sequence.
It is clear if .9'n+1 = 7Tn, the set of algebraic polynomials of degree at

most n, and if f is any polynomial, then (2.5) is a bounded sequence. The
next theorem, due to Poreda [10], shows that there exist functions fE C(I)
for which (2.5) is an unbounded sequence. Hereafter we will assume the
approximating class is 7T n •



LIPSCHITZ CONSTANTS 87

THEOREM 1. There exists a function f E C(I) such that (2.5) is unbounded.

Poreda actually established by a clever construction that there exists a
subsequence {Mn,(f)};:1 of (2.5) such that

lim Mn(f) = -+- 00.
,--,00 I

Poreda claims, however, to have established that

(2.7)

(2.8)

but it appears to the present authors that to establish (2.8), Poreda makes
use of a remark that appears in [LO], namely that

n = 0, I, ... , (2.9)

for anyf E C(I). However, inequality (2.9) is, in general, false, as the following
example demonstrates.

EXAMPLE 1. Letf(x) = x 3,J = [-1, 1], and suppose that approximation
is from 7T2 and 7T3, respectively. It is easy to see that T2(f)(x) = 3x/4 and
that T3(f)(x) = x 3• Then

(f) = inf III-- pll- iiI-Tin (2.10)
Y2 pErrO II p - T2(f):!P'!12 ( f)

But if p(x) = x, the quotient in (2.10) is less than one, and hence Y2(f) < 1.
Thus by (2.4) M 2(f) > 1. However, sincefE 7T3 , M 3(f) = 1.

In the remainder of this section we prove the existence of functions f E C(I)
for which (2.8) is true by utilizing techniques that are entirely different than
those employed by Poreda. These techniques will yield a class of functions
with properties quite different from those possessed by the function con
structed in [LO]. The following two theorems are needed in the subsequent
analysis.

THEOREM 2. Suppose that approximation is from 7Tn, that f E C[ -1, 1],
and that r E C( -1,1). Further assume that f(,H) is positive and strictly
increasing on (-I, 1). Let -I :( X on < X in < '" < X nn < Xn+l. n :( 1 be
the ordering of En+l(f). Then Z'.. ,n < x

'
... n < Z"+l.n , where

(
n-:'-I--k)

Zion = cos " 1 7T,
11 -j-- .

k =~ 1,2, ... ,11. (2.11 )

Theorem 2 is actually a special case of Theorem 3.3 in [11]. See also
[9, p. LOl].
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THEOREM 3 (Cline [4]). LetfEC[--J, J] withf¢; 17n . Let Tn(f)E17n be
the best approximation to f, and for any Chebyshev alternation {xknlZ:t for
f - Tn(f) define qin E 17n by qin(X/cr,) =cc sgn[f(Xkn) - Tn(f)(Xkn)], k c=
0, 1,... , n .~ 1, k ,/, i. and i 0..... n·- I. Then

M,,(f) max .: qin i)·
0 ..: j':n-i'!

(2.12)

Remark. If, as in Theorem 2, En •len contains exactly n -'- 2 points. then
En+1(f) is a Chebyshev alternation. In this case, it is easy to show that

Aln(f) = max
O,.:~: /",';'.11+1

qin I::. (2.13)

To see this, one uses Theorem 5 and Lemma 3 of [4], tohether with the
observation that Mn(f) = K as given in expression (4) of [4] in this case.
This latter observation is a direct consequence of (2.1) and (2.4).

We utilize Eq. (2. I3) to establish the main theorem of this section.

THEOREM 4. Suppose there exists an integer N °and a real number
ex > °such that f satisfies the hypotheses of Theorem 2 for all n ? N, and,
such that

for all g, TJ E [ -1, I] and for all n N. Then

lim Mn(f) = -+- CD.
n-'cr:..

Proof By the remark following Theorem 3 we note that

(2.14)
But

k == I, 2, ... , n ... I. Thus qo,,(x) interpolates the function

(
.) ~ I(x) .- Tn(f)(x)

g.X - lif - Tn(f)I!

e,,(f) = :if.- Tn(f)]!·

(2.15)

(2.16)

Then the classical remainder theorem of interpolation theory [3, p. 60]
implies that

oln-"1)(t )(x' x' )(x'
( ) ( )

_ b ' \,,". --. In .
g X - qon X -

x 2n ) ... (X

(n .L I) I

(2.17)
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where -1 ~ gx ~ 1. Then (2.15), (2.16), and (2.17) imply that

89

But from [9, p. 78],

where -1 ~ TJ ~ 1. Therefore, (2.15) and (2.18) imply that

(2.18)

, Ipn+l)((r) I
1 + II qOn Ii ~ j<n+!l(TJ) 2n j x - x1n I ... I x - x nn I I x - x n+1.n I

(2.19)
for each x EO [-1,1].

Inequality (2.19) and the hypothesis of Theorem 4 now imply that

1 + Ii qon II ~ ex2n 1(-1 - x1n)(-1 - x2n) ... (-1 - x nn)(-1 - xn+1.n)1

for n ~ N. An application of Theorem 2 yields

I + I: qon II ~ ex I 2n( --1 - Zln)( - I - Z2n) ... (- I - znn)1

= ex I C~+1(-I)I/(n + I), (2.20)

where Cn+1 is the Chebyshev polynomial ofdegree n + I. But it is well known
that I C~+l(l)1 = (n + 1)2. Therefore (2.20) implies for n ~ Nthat

n): N,

I + II qon II ~ ex(n + I).

Finally (2.21) and (2.13) imply that

1 + Mn(f) ~ ex(n + I),

and consequently
lim Mn(f) = + 00. I
n-~r::c

(2.21)

EXAMPLE 2. Let hex) = e", hex) = (x + I) eX+1, 1= [-1,1]. Then
Theorem 4 implies that limn~CXJ M n(/;) = +00, i = I, 2.

The results of Theorem 4 are perhaps surprising when compared with the
results of Poreda. In particular, the construction in [10] requires for the
indices {ni}~l that £n;+1(f) C (a, b) C [-1,1], where containment is proper,
and the interval (a, b) does not depend on i. In contrast, functions satisfying
Theorem 4 have Chebyshev alternation sets £n+1(TT) that behave similarly
to the extreme points of the (n + I)st-degree Chebyshev polynomial Cn+1 .
Thus it seems plausible (at least to these authors) that (2.5) may be bounded
only for polynomial functions.
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I, the set

We conclude this section by considering a second theorem due to Poreda
[10] for the case n I.

THEOREM 5. Let B denote the unit bal! of C(l). Then for n
{Mif)}fER is not bounded.

In light of Example I, Poreda establishes this theorem only for n
although he states it for n I. However, Cline [4, Theorem 4] establishes
that for fixed n ? 2 and for any E > 0, there exist functions g( and h ,
lih II = 1, continuous on I, with corresponding best approximations T(gJ
and TU:), satisfying

Ii T( g() - T(h)11 ~ 1
il g( ...- h II ;;'/ E

It follows immediately that

sup {A"U)j
fEB

-I-- 00, n = 2,3, ....

Theorem 5 now follows for n = 2, 3,... , from (2.2) and (2.4).

3. LIpSCHITZ CONSTANTS

Theorem 4 of Section 2 says that (2.5) may be unbounded for functions
that are restrictions of entire functions to the segment [-I, 1] of the complex
plane. On the basis of inequality (2.2) it remains to establish a companion
result for sequence (2.6). The techniques employed in the previous section
do not appear applicable in the Lipschitz constant setting, since 2Mn(.f)
is merely an upper bound for An(.f), n = 0, I,.... In particular

An(.f) = sup !I T,,(.f)- ~n(g)11 .
YEC(I) Ilf - g ,[

q¥of

(3.1)

No alternate representation of An(.f) (like (2.1) for the strong unicity constant)
is known to the authors of this paper.

Thus we construct anfE C(I) and a sequence {gn):'l h C(I) such that

(3.2)

The construction of the function f is based on the construction in [10],
and f will be the restriction of an entire function to the segment [-1, 1] of
the complex plane.
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Let [Xl' Xoo] be properly contained in [0, H and let {Xk}~~l C (0, t) be a
monotone sequence converging to Xx . Let Qn. be a polynomial satisfying,

(i) Qn( -1) = -I(2ii 1,,
(ii) Qn(-i) = 0,,

(iii) QnCO) = 1(2i +1,,
(iv) Qn,(X1J = (-I)"(2 i for k = 1,2,... , 2ni + 2,

(v) Q (x ) = (_1)2n i +3(2H·I (3.3)n i 2ni +3 ,

(vi) QniW = 0,

(vii) Qnp) == 1(2iH,

(viii) Qn(x) is monotone on the intervals [-1, -i), [-t,O], [0, Xl],
[Xk-l , xd, k ~ 2, ... , 2ni + 3, [X2n +3 , Hand [i, 1].,

We note a theorem ofWolibner [12] (see also [10)) assures the existence of
a polynomial Qn satisfying (3.3). To define ni set n l = 2 and let niH be the

i

degree of Qni , for i = 1,2,.... Now define Q:i by

Let
oc

f(x) = L Q:;Cx)
i=l

and
i--l

Pn;Cx) = L Q:;Cx).
j~l

(3.5)

Then as in [10], it is easily shown that Pn(x) is the best approximation from
7Tn, to f on [-1, 1]. Now consider the co~plex functions

and

x

fez) = L Q:i(Z)
i~l

i-I

Ui(Z) == Pn .(z) = '\' Q:'(Z)., 1..-}
j~l

(3.6)

(3.7)

Let go denote interior and boundary of the ellipse with foci at ± 1 and with
semi-axes a = t(p + p-l), b =, t(p - p-l). Then a theorem of Bernstein
[7, p. 42] implies for any polynomial Pn ,

p > 1, (3.8)
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where M ==, max_1<X<1 • Pn(:')" Consequently (3.8) and the definition of Qn
imply ,

fez) ~- u,(z)

Thus for any fixed p > 1,

I Q~}z)
J'""-i

(3.9)

!.im i fez) - u,(z) ~~ 0
1-:<£

uniformly on If" . Since fez) is the uniform limit of a sequence of analytic
functions on to, fez) is analytic on f:". This is true for any p > I, and
consequently fez) is entire. Thus (3.4) is the restriction of an entire function
to the segment [-1, 1] of the complex plane.

We now consider again the quotient in (3.2). Let

in,(x) =c. f(x)- p",(x) = I Q:/x).
):..:..oj

i = 1,2,.... (3.10)

With this notation finding a sequence {gn};"~l ~ CCl) that satisfies (3.2)
for the f defined in (3.4) is equivalent to finding a sequence {h n };"=l ~ CCl)
satisfying t

(3.11)

This follows from the fact that if p E 7T iI and if g E CCl), then Tn( P + g) =.=

P + Tn(g)·
We note that the Q';; are monotone in the same sense on [-1,0], [0, xd, ... ,

[X2n.+2 , X 2n.+3], j :? i, 'and on [t, 1]. Also Q:i{-t) === Q:i.m = 0 for j ;:":0 1.
Thu'sfn; is ~onotone on these intervals, i == 1: 2, ... , andfn(-t) = fnm = O.
Furthermore, if • •

cr I I
E· = I ----. ----.

, jc' 2j
- i (niH !)2 ,

(3.12)
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i = 1,2,... , then

fni--1) = -(1/21+1) Ei,

fniO) = (1/2 i +1) Ei,

fni(Xk) = «-I)';2 i
) Ei, k = 1,2,... , 2ni + 2,

fnix2ni+3) = -(1/21+1)[2E; - (I/(nH1!)2)],

fnp) = (1/2 i+1) Ei,

and

We now define hni ' i = 1,2,... , as follows:

93

(3.13)

hn,(x) = In;(x) + Cnl~t)ni,

hni(x) = Ini(X) + cnixni, (3.14)

It is clear for any choice of the constant Cn that hn . is continuous on [-I, I].
Equations (3.13) and (3.14) imply that' •

k = 1, 2, ... , 2ni + 2.

(3.15)
We now select en; to ensure that

(3.16)

That such a choice is possible follows from (3.13) and the definition of h ll •

(In fact, °< Cn (I/2 i +1
) Ei will suffice.) Consequently (3.15), (3.16), a~d

the alternation theorem [3, p. 75] imply that

(3.17)

Returning to the quotient in (3.11), we have that

This equation implies (3.11). Finally, (3.2) is established for thef of (3.4) and
for

ic==1,2, ....

The above analysis establishes the following theorem.
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THEOREM 6. There exists a function f E eel) such that sup"tA,,(f)} x'.
Furthermore, f may be chosen to be the restriction of an entire function to tlli'
segment [-I, I] of the complex plane.

We note since itnU)
(2.7).

2lv!,,( j), n c= O. I, ... , that Theorem 6 also implies

4. REMARKS AND CONCLUSIONS

Although the question as to whether or not there exists a nonpolynomial
function f for which the sequences (2.5) and (2.6) are bounded remains an
open question, the results of this paper lead the authors to conjecture that
these sequences are bounded only for polynomials.

It is also of interest to determine whether or not these sequences are indeed
monotone for nonpolynomial functions.
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